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ABSTRACT

Deep learning technology is regarded as one of the latest
advances in data science and analytics due to its learning
abilities from the data [1]. As a result, deep learning is widely
applied in the human crowd analysis domain [2]. Although it
has achieved remarkable success in this area, a fast and robust
model for pushing behavior detection in the human crowd is
unavailable. This paper proposes a model that allows crowd-
monitoring systems to detect pushing behavior early, helping
organizers make timely decisions before dangerous situations
appear. This particularly becomes more challenging when
applied to real-time video streams of crowded events, which the
proposed model accomplishes with reasonable time latency. To
achieve this, the model employs a hybrid deep neural network.

A. Related works

In crowded events, particularly at entrances, pedestrians may
obey the social norm of queuing or imposing some pushing
behavior to access events faster [3]. Helena et al. [4] developed
a manual rating system to understand when, where and why
pushing appears in video recordings of crowded entrance areas.
Although this system is manual, it emphasizes the need for
computer scientists to develop automatic approaches for
pushing detection in crowds. The system has clearly defined
pushing behavior and provided ground truth data for pushing
behavior. In this context, this behavior involves pushing others
and moving forward quickly by using one's arms, shoulders,
elbows, or upper body, as well as using gaps among crowds to
overtake and gain faster access.

However, developing automatic pushing detection is
difficult due to the dense crowds, the diversity of pushing
behavior, and the fact that the relevant features for pushing
behavior representation are not well understood [5]. In 2022,
Alia et al. [5] proposed the first automatic approach for pushing
forward motion detection in video recordings at entrances of
crowded events. The authors combined the EfficientNetBO0-
based classifier with CPU-based optical flow and false
reduction algorithm to tackle the challenges of pushing
detection. However, the used model in this approach is slow,
and its accuracy decreases in complex scenarios of pushing
behavior.

B. Proposed Deep Neural Network model

To address the above issues, we proposed a new model for
localizing pushing patches from top-view video streams. It is
important to note that the duration of each input is two seconds
of streams to meet the duration of samples in the dataset that
will train our model. The main goal of the model is to detect the
pushing patches with a reasonable time delay that allows

organizers to act. As shown in figure 1, our model consists
mainly of feature extraction and classification components.
Feature extraction employs three methods to extract the
relevant features from the input: pre-trained deep optical flow
model [6], wheel color [7], and EfficientNetB1 [8]. The pre-
trained deep optical flow model is based on Convolutional
Neural Network (CNN) and recurrent neural network
architectures. This composition makes it an efficient approach
for dense crowds because it reduces the effect of occlusions on
optical flow estimation. EfficientNetB1 is one of the most
efficient and simple CNN architectures. Firstly, the pre-trained
model estimates the optical flow vectors in the input streams.
The color wheel method then calculates the speed and direction
of each pixel from the optical flow vectors. Then, it visualizes
the calculated information to generate a Motion Information
Map (MIM)-patches. Every patch represents the visual motion
information of a specific region of the crowd at a particular time.
After that, EfficientNetB1 extracts the feature maps from the
generated MIM-patches. Next, the classification component
labels each MIM-patch as pushing or non-pushing using a fully
connected layer with one neuron and a Sigmoid activation
function. Finally, the input is annotated.
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Fig. 1 The proposed model architecture

C. Dataset Preparation

To train and evaluate EfficientnetB1 with the fully
connected layer, we prepared a new labeled dataset (training,
validation, and test sets) containing several pushing scenarios.
The samples in the dataset are pushing and non-pushing MIM-
Patches. The data sources used to prepare the dataset are: 1)
five video experiments, including their trajectory data, were



selected from the data archive hosted by Forschungszentrum
Julich under CC Attribution 4.0 International license [9, 10]. 2)
the ground truth data of pushing generated by the manual rating
system for experiments [4]. To create the dataset from the data
sources, firstly, we utilized the pre-trained deep optical flow
model and the color wheel method to generate MIM-patches.
After that, we used the trajectory and ground truth data to label
the patches as pushing and non-pushing. Then, the labeled
dataset was randomly divided into three sets: 70 % for training,
15 9% for validation, and 15 % for testing. Finally, we obtained
1585 pushing samples with 1182 non-pushing samples for the
training set. In contrast, each of the validation and test set
contains 336 and 251 pushing and non-pushing MIM-patches,
respectively.

D. Preliminary Evaluation and Results

In order to evaluate the performance of the proposed model,
we used the pushing detection model developed by Alia et al.
[5] as the baseline of the proposed model. Moreover, overall
accuracy, macro Fl-score, and computational time metrics
were employed in this evaluation process. For a fair comparison,
the implementations, training processes, and all experiments
for both models were conducted over the same dataset (our
labeled sets) and the environment (Google Collaboratory Pro)
using Python 3 with Keras library.

The results in Table 1 show the proposed model obtained 86%

for both accuracy and F1-score, whereas the baseline model
achieved 83% accuracy and F1-score. The main reason for this
result is that the EfficientNetB1 is more efficient on datasets
containing complex pushing scenarios than the EfficientNetBO.

TABLE |
PERFORMANCE COMPARISON OF THE PROPOSED MODEL WITH THE EXISTING
MODEL (BASELINE MODEL) ON OUR DATASET

Model Accuracy Fl-score | Computational time
(%0) (%) (s)

Baseline | 83 83 17.4

model

Our 86 86 1.3

model

To measure the computational time of the models, we ran
every model on 20 input streams, where the duration of each
stream is two seconds with a 1920 x 1080 pixels resolution and
eight patches. Then, we calculated the average computational
time of all runs of every model. The last column in Table 1
displays a significant difference in the average computational
time between the two models. Our model's computational time
is less than the baseline model by 13 times for annotating one
input of streams. It took only 1.3 seconds; in contrast, the
baseline model needed 17.4 seconds for the same task. This
result can be explained by using the GPU-pre-trained deep
optical flow model, which is significantly faster than the deep
optical flow model used in the baseline model.

E. Conclusion

In this paper, we proposed a fast and robust model for
detecting pushing behavior in video streams of crowded events.
In particular, the proposed model, based on a hybrid deep
neural network, identifies pushing patches from top-view video
streams in real-time. It combines a handcrafted crowd motion
descriptor with EfficientNetB1 to extract the relevant features
from the input streams. A fully connected layer with a neuron

and Sigmoid activation function then identifies pushing patches
based on the extracted features. Moreover, we introduced a new
dataset for pushing behavior containing varied scenarios of
entrance areas to train and evaluate the proposed and baseline
models. The results showed that our model identifies pushing
patches with 86% accuracy and 1.3 seconds delay time. On the
other hand, the baseline model achieved 83% accuracy with
17.4 seconds delay time.
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