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ABSTRACT 

Deep learning technology is regarded as one of the latest 

advances in data science and analytics due to its learning 

abilities from the data [1]. As a result, deep learning is widely 

applied in the human crowd analysis domain [2]. Although it 

has achieved remarkable success in this area, a fast and robust 

model for pushing behavior detection in the human crowd is 

unavailable. This paper proposes a model that allows crowd-

monitoring systems to detect pushing behavior early, helping 

organizers make timely decisions before dangerous situations 

appear. This particularly becomes more challenging when 

applied to real-time video streams of crowded events, which the 

proposed model accomplishes with reasonable time latency. To 

achieve this, the model employs a hybrid deep neural network. 

A. Related works 

In crowded events, particularly at entrances, pedestrians may 

obey the social norm of queuing or imposing some pushing 

behavior to access events faster [3]. Helena et al. [4] developed 

a manual rating system to understand when, where and why 

pushing appears in video recordings of crowded entrance areas. 

Although this system is manual, it emphasizes the need for 

computer scientists to develop automatic approaches for 

pushing detection in crowds. The system has clearly defined 

pushing behavior and provided ground truth data for pushing 

behavior. In this context, this behavior involves pushing others 

and moving forward quickly by using one's arms, shoulders, 

elbows, or upper body, as well as using gaps among crowds to 

overtake and gain faster access. 

However, developing automatic pushing detection is 

difficult due to the dense crowds, the diversity of pushing 

behavior, and the fact that the relevant features for pushing 

behavior representation are not well understood [5]. In 2022, 

Alia et al. [5] proposed the first automatic approach for pushing 

forward motion detection in video recordings at entrances of 

crowded events. The authors combined the EfficientNetB0-

based classifier with CPU-based optical flow and false 

reduction algorithm to tackle the challenges of pushing 

detection. However, the used model in this approach is slow, 

and its accuracy decreases in complex scenarios of pushing 

behavior. 

B. Proposed Deep Neural Network model 

To address the above issues, we proposed a new model for 

localizing pushing patches from top-view video streams. It is 

important to note that the duration of each input is two seconds 

of streams to meet the duration of samples in the dataset that 

will train our model. The main goal of the model is to detect the 

pushing patches with a reasonable time delay that allows 

organizers to act. As shown in figure 1, our model consists 

mainly of feature extraction and classification components. 

Feature extraction employs three methods to extract the 

relevant features from the input: pre-trained deep optical flow 

model [6], wheel color [7], and EfficientNetB1 [8]. The pre-

trained deep optical flow model is based on Convolutional 

Neural Network (CNN) and recurrent neural network 

architectures. This composition makes it an efficient approach 

for dense crowds because it reduces the effect of occlusions on 

optical flow estimation. EfficientNetB1 is one of the most 

efficient and simple CNN architectures. Firstly, the pre-trained 

model estimates the optical flow vectors in the input streams. 

The color wheel method then calculates the speed and direction 

of each pixel from the optical flow vectors. Then, it visualizes 

the calculated information to generate a Motion Information 

Map (MIM)-patches. Every patch represents the visual motion 

information of a specific region of the crowd at a particular time. 

After that, EfficientNetB1 extracts the feature maps from the 

generated MIM-patches. Next, the classification component 

labels each MIM-patch as pushing or non-pushing using a fully 

connected layer with one neuron and a Sigmoid activation 

function. Finally, the input is annotated. 

 

Fig. 1  The proposed model architecture 

C. Dataset Preparation 

To train and evaluate EfficientnetB1 with the fully 

connected layer, we prepared a new labeled dataset (training, 

validation, and test sets) containing several pushing scenarios. 

The samples in the dataset are pushing and non-pushing MIM-

Patches. The data sources used to prepare the dataset are: 1) 

five video experiments, including their trajectory data, were 



selected from the data archive hosted by Forschungszentrum 

Jülich under CC Attribution 4.0 International license [9, 10]. 2) 

the ground truth data of pushing generated by the manual rating 

system for experiments [4]. To create the dataset from the data 

sources, firstly, we utilized the pre-trained deep optical flow 

model and the color wheel method to generate MIM-patches. 

After that, we used the trajectory and ground truth data to label 

the patches as pushing and non-pushing. Then, the labeled 

dataset was randomly divided into three sets: 70 % for training, 

15 % for validation, and 15 % for testing. Finally, we obtained 

1585 pushing samples with 1182 non-pushing samples for the 

training set. In contrast, each of the validation and test set 

contains 336 and 251 pushing and non-pushing MIM-patches, 

respectively. 

D. Preliminary Evaluation and Results 

In order to evaluate the performance of the proposed model, 

we used the pushing detection model developed by Alia et al. 

[5] as the baseline of the proposed model. Moreover, overall 

accuracy, macro F1-score, and computational time metrics 

were employed in this evaluation process. For a fair comparison, 

the implementations, training processes, and all experiments 

for both models were conducted over the same dataset (our 

labeled sets) and the environment (Google Collaboratory Pro) 

using Python 3 with Keras library. 

The results in Table 1 show the proposed model obtained 86% 

for both accuracy and F1-score, whereas the baseline model 

achieved 83%  accuracy and F1-score. The main reason for this 

result is that the EfficientNetB1 is more efficient on datasets 

containing complex pushing scenarios than the EfficientNetB0.    

TABLE I 

PERFORMANCE COMPARISON OF THE PROPOSED MODEL WITH THE EXISTING 

MODEL (BASELINE MODEL) ON OUR DATASET 

Model Accuracy 

(%) 

F1-score 

(%) 

Computational time 

(s)  

Baseline 

model 

83 83 17.4 

Our 

model 

86 86 1.3 

 

To measure the computational time of the models, we ran 

every model on 20 input streams, where the duration of each 

stream is two seconds with a 1920 x 1080 pixels resolution and 

eight patches. Then, we calculated the average computational 

time of all runs of every model. The last column in Table 1 

displays a significant difference in the average computational 

time between the two models. Our model's computational time 

is less than the baseline model by 13 times for annotating one 

input of streams. It took only 1.3 seconds; in contrast, the 

baseline model needed 17.4 seconds for the same task. This 

result can be explained by using the GPU-pre-trained deep 

optical flow model, which is significantly faster than the deep 

optical flow model used in the baseline model. 

E. Conclusion 

In this paper, we proposed a fast and robust model for 

detecting pushing behavior in video streams of crowded events. 

In particular, the proposed model, based on a hybrid deep 

neural network, identifies pushing patches from top-view video 

streams in real-time. It combines a handcrafted crowd motion 

descriptor with EfficientNetB1 to extract the relevant features 

from the input streams. A fully connected layer with a neuron 

and Sigmoid activation function then identifies pushing patches 

based on the extracted features. Moreover, we introduced a new 

dataset for pushing behavior containing varied scenarios of 

entrance areas to train and evaluate the proposed and baseline 

models. The results showed that our model identifies pushing 

patches with 86% accuracy and 1.3 seconds delay time. On the 

other hand, the baseline model achieved 83% accuracy with 

17.4 seconds delay time. 
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